
Journal of Network Intelligence ©2023 ISSN 2414-8105

Taiwan Ubiquitous Information Volume 8, Number 3, August 2023

Policy Extraction and Optimization with Access Logs
for Attribute-based Access Control

Wei Sun∗

School of Computer and Information Technology
Xinyang Normal University

Xinyang 464000, P. R. China
sunny810715@xynu.edu.cn

Long Li
Guangxi Key Laboratory of Trusted Software

Guilin University of Electronic Technology
Guilin 541004, P. R. China

lilong@guet.edu.cn

Ying Hu
Department of Electric Engineering
Pacific Gas and Electric Company

San Ramon 94583, USA
huying0902@gmail.com

∗Corresponding author: Wei Sun
Received March 19, 2023, revised May 13, 2023, accepted June 16, 2023.

Abstract. The policy engineering technology based on attribute-based access control is
commonly used to derive rules from the existing authorization information such as access
logs. However, most conventional methods extract rules that do not support negative at-
tribute expressions, and there are numerous redundant and inaccurate rules. This study
proposes a novel policy-engineering method to extract and optimize the ABAC policy
based on access logs. First, to enhance the policy interpretability while reducing the en-
gineering scale, the clustering technology is utilized to partition access logs into different
rule clusters, and an algorithm is presented to extract effective rules supporting both the
positive and negative attribute conditions. Second, to guarantee the policy quality, an
optimization algorithm is proposed to repeatedly correct the extracted rules according to
different policy categories, which improves the policy accuracy and reduces the complexity
of the policy engineering. Last, the evaluation criteria of the policy quality are presented
based on principles of the correctness and conciseness, and the efficiency and effective-
ness of the proposal are demonstrated through experiments. The experimental results
show that compared to the existing studies, the proposed method not only enhances the
policy interpretability but also guarantees the policy quality.
Keywords: Attribute-based access control, Policy extraction, Policy optimization, Pol-
icy quality, Access logs

1. Introduction. With the rapid advances and wide applications of the emerging network-
information and computing technologies such as the Internet of Things (IoT) [1–3],
blockchain and edge computing, traditional access control mechanisms cannot realize the
authorization requirements in the fine-grained application scenarios. The attribute-based
access control (ABAC) overcomes the limitations of the existing models and provides a
flexible way to capture the access requests of large-scale complex and dynamic systems
[4]. To successfully implement the ABAC mechanism, it is necessary to determine an

932

Policy Extraction and Optimization with Access Logs 933

appropriate authorization policy and build a good access control system. For this pur-
pose, the policy engineering technology based on ABAC was proposed [5, 6], which was
fallen into two construction approaches: The top-down and bottom-up. Compared to the
time-consuming, error-prone and labor-intensive processing way for the former, the latter
adopted an automatic or semi-automatic way to derive rules, which could reduce the cost,
time and errors during process of the policy construction and system development. The
bottom-up approach for ABAC policy engineering, often referred to as policy extraction,
has attracted much attention and interest for both academia and industry in recent few
years [7, 8].

Usually, the policy-extraction method attempts to derive rules from the existing au-
thorization information such as access logs or access lists. Different extraction methods
have been proposed. Xu and Stoller [9] were first to study the ABAC policy extraction
problem from a given access control lists or log records and proposed a bottom-up method
that is simply represented as the Xu-Stoller. Das et al. [10] showed that there existed the
similarity for developing different systems between the policy engineering based on ABAC
and the role engineering based on role-based access control (RBAC), and they also pre-
sented a survey that discussed how to resolve such two engineering problems in detail. To
make the results of the policy extraction more interpretable, it is necessary to aggregate
subjects, resources and other entities that have the same or similar characteristics [11].
However, the engineering scale is very large, and the extraction process becomes more
complex as the number of attribute properties increases using the traditional methods.
To reduce the scale of the policy engineering, Das et al. [12] presented a policy mining
scheme using the Gini impurity method. Subsequently, to further minimize the number
of the mined rules, Das et al. [13] visually represented a given authorization matrix, and
then proposed a novel rule-extraction method to mine ABAC rules from the rearranged
matrix, which is simply denoted as VisMAP. To visually specify ABAC rules while de-
tecting conflicts, Zheng et al. [14] converted the rules into a set of binary sequences and
proposed a new policy engineering method. To further reduce the policy-engineering scale,
Sun et al. [15] adopted the partitioning and compressing technologies and pro-posed a
novel optimization method.

The ABAC mechanism is very flexible due to its powerful policy expressiveness. Es-
sentially, a policy can contain several authorization rules, and each rule is comprised
of different combinations of the attribute–value pairs of entities, as well as operations.
Actually, ABAC rules with various kinds of attribute conditions can enhance the policy
interpretability and further enrich the policy expressiveness. Note that the variant and
number of attribute-condition expressions in any extracted rule are very important for
realizing various requirements such as the permitted or denied authorization, and they
also affect the time and result of policy decisions. Das et al. [16] combined the top-down
and bottom-up approaches and proposed a novel method to construct ABAC rules, in
order to improve the efficiency of the policy engineering. As a matter of fact, the autho-
rization rules for ABAC with both the positive and negative action conditions may be
more flexible and convenient. For this purpose, Iyer et al. [17] presented a novel policy-
extraction method based on ABAC. To reduce the number of the policy rules, John et
al. [18] attempted to derive rules that satisfied access requests in the multi-cloud envi-
ronment, and they presented a new solution. However, most existing methods extract
the authorization rules that only support positive condition expression, and they do not
discuss the attribute expressions with the negative operation type.

The most critical step for the construction of an ABAC system is to extract an appro-
priate authorization policy, such that the authorization result produced by the extracted
rules is consistent with the original access mode, while the extracted policy should be

934 W. Sun, L. Li and Y. Hu

as concise and correct as possible. Talukdar et al. [19] converted the policy extraction
into to the problem of the functional dependencies for a given relational database and
then presented an algorithm named as ABAC-FDM in order to extract ABAC policies.
However, the computational complexity of the algorithm was very high. Subsequently,
to minimize the set of the extracted rules, the authors proposed an alternative algorithm
named as ABAC-SRM for extracting suitable rule set from the candidates. To meet the
collaborative access requests in multi-cloud environments, John et al. [20] presented the
definition of the rule-extraction problem called CDRMP and then proposed the resolution,
in order to discover a minimal policy set. To further suit complex requirements under
the dynamic collaboration environment with cross domains, they also defined a policy
extraction problem and presented a heuristic solution for extracting the minimal set of
authorization rules [21]. To improve the effectiveness of the policy extraction and reduce
the complexity of policy engineering, Gautam et al. [22] associated the property of each
attribute within any rule to a specific weight and presented a constrained rule-extraction
algorithm to construct policy rules from the given authorization matrix, while minimizing
the sum of the total weights of the rules. To guarantee the succinctness and correctness
of the policy engineering, Cotrini et al. [23] presented a new policy engineering method
to derive rules from the sparse logs and considered the reliability as a new evaluation cri-
terion of the policy quality. However, there are numerous redundant and incorrect ABAC
rules extracted by the existing methods. Inconsistent or incorrect policy decisions may
result in previously authorized access requests being denied, or previously unauthorized
requests being allowed, which reduce the policy quality.

To resolve the above-mentioned problems, this study proposes a novel policy-engineering
method, which is called ABAC policy extraction and optimization based on access logs.
The main contribution points of this study are generalized as follows:

(1) To enhance the policy interpretability, while reducing the scale of the policy en-
gineering, we utilize the clustering partition technique to construct an initial rule set,
and then we present an algorithm to extract effective attribute conditions including the
positive and negative from the rule clusters during the policy-extraction process. We also
demonstrate the efficiency of the proposal through experiments.

(2) To improve the policy accuracy, while reducing the complexity of the policy en-
gineering, we further pro-pose a policy optimization algorithm to repeatedly correct the
extracted rules and improve the policy quality according to different policy categories.
We also present the criteria of evaluating the policy quality based on principles of the
correctness and conciseness and demonstrate the effectiveness of the proposal through
experiments.

The rest of the article is structured as follows. The preliminaries used for our work are
discussed in Section 2. Section 3 proposes a novel policy-engineering method with access
logs, including three phases: Preprocessing, policy extraction, and policy optimization.
We implement experiments and comprehensively present the eval-uation analysis in Sec-
tion 4, and we conclude the article and discuss future work in Section 5.

2. Preliminaries. Before proposing our methodology, some necessary preliminaries are
discussed, which include the basic elements of ABAC, the ABAC policy specification with
access logs, and the clustering method.

2.1. Basic Elements of the ABAC Model. The basic ABAC model [4] mainly consists
of the following sets, relationships, and functions:

(1) U, O, S, and OP represent the finite sets of requesting subjects (or users), requested
objects, environments, and operations, respectively;

Policy Extraction and Optimization with Access Logs 935

(2) Au, Ao, As represent the attribute sets of user u, object o, and session s, respectively;
(3) E and A represent the finite sets of all the entities and entity attributes in the

system, where E = U ∪O ∪ S, A = AU ∪ AO ∪ AS;
(4) Va represents a finite set of all the possible values that attribute a can take, and

fa e(e,a) represents a function that returns the values of attribute a that entity e takes.
Besides, the expression of the attribute value pair is represented as the two-tuple form

< a,∇v > in this work, where a is the attribute name, v is the corresponding attribute
value, and the relation-operator set ∇ = {” = ”, ”!”, ” > ”, ” < ”} is used to denote the
relationship between attribute a and value v. For example, ¡a,=v¿ indicates that a can
take v, which is regarded as the positive attribute expression and is simply denoted as
¡a,v¿. Similarly, ¡a,!v¿ indicates that a can take a value except v, which is regarded as
the negative expression. For convenience of the specifications, we only discuss the first
two relation operators in this work. Further, AC is used to represent the set of all the
attribute conditions, and EAV is used to represent the assignment relationship between
all the entities and attribute conditions.

2.2. ABAC Policy Specification with Access Logs. The basic ABAC policy speci-
fication with the access logs [17], which is represented as π, mainly involves the following
components:

(1) Access request rq: It is a quadruple form < u, o, s, op >, which indicates that user
u requests to access and perform operation op on object o in session s.

(2) Authorization decision function dπ(rq): It represents the decision of the authoriza-
tion policy π for a given request rq, where dπ(rq) = permitted indicates that the subject is
allowed to access the object, and dπ(rq) = denied indicates that the access is not allowed.

(3) Access logs AL: An access record is a two-tuple form < rq, d >, where rq indicates
the access request, d indicates the authorization decision for rq, and the value of d can take
permitted or denied. The record with the permitted decision indicates that the subject
is allowed to perform an operation on the object, which is regarded as the positive log;
otherwise, the user is not allowed to access the resources, such record is regarded as the
negative log. Thus, set AL of all the access logs contains both the positive AL+ and
negative AL−, which are represented as:
AL+ = {< rq, d > | < rq, d >∈ ALand d = permitted}, where AL+ represents the set

of all the positive log records;
AL− = {< rq, d > | < rq, d >∈ ALand d = denied}, where AL− represents the set of

all the negative log records; AL = AL+ ∪ AL−.
(4) Authorization rule ρ: It is a two-tuple form < AC, op >, where AC indicates the at-

tribute conditions, and op indicates the operating action. The set of all the authorization
rules is represented as P = ρ1, ρ2,

(5) Policy categories: According to whether or not the extracted policy is consistent
with the original policy, the policy can be divided into different categories. For the same
access request, if the authorization decision of the original policy is permitted, then that
of the extracted also should be permitted. It is regarded as the false negative policy once
the permitted access request is denied by the extracted policy, which is simply denoted as
πFN . Similarly, πFP indicates that the original denied access request is permitted by the
extracted policy, πTP indicates that the original and extracted policies are both permitted,
while πTN indicates that the original and extracted ones are both denied for the same
access request.

2.3. Clustering Method. The clustering technique using the unsupervised learning
method can specify the structure of sample data, particularly for the categorical data
with no labels. In order to mine and extract a high-quality ABAC policy from the given

936 W. Sun, L. Li and Y. Hu

access logs, the process of the policy extraction can be regarded as the mapping from the
log set to a set of clusters that represent ideal ABAC rules [24]. Such mapping relation-
ship can be represented as a function f : X → Y , where X is a set of authorization-tuple
records, and Y is a set of cluster labels.

The authorization records in any cluster should have similar characteristics, since each
cluster label of Y corresponds to a single ABAC rule. To obtain the similarity or distance
among sample clusters, the Jaccard coefficient is widely used to identify the clusters with
the same or similar attribute features [25]. Thus, given set S = Sa, Sb, . . . , Si, . . . , where
Sa = a1, a2, . . . , Sb = b1, b2, . . . , Si = i1, i2, . . . , the similarity and distance among samples
are calculated as follows.
(1) ∀(Si, Sj) ∈ S the similarity and distance between samples Si and Sj are expressed as:

sim(Si, Sj) =
|Si ∩ Sj|
|Si ∪ Sj|

(1)

dis(Si, Sj) = 1− sim(Si, Sj) (2)

(2) ∀(Sj1, Sj2, . . . ∈ S) the similarity and distance between a single sample Si and a sample
set {Sj1, Sj2, . . .} are expressed as:

sim(Si, {Sj1, Sj2, ...}) =
1

|{Sj1, Sj2, ...}|
∑

Sj∈{Sj1,Sj2,...}

sim(Si, Sj) (3)

dis(Si, {Sj1, Sj2, ...}) = 1− sim(Si, {Sj1, Sj2, ...}) (4)

3. Methodology. In this section, we propose a novel policy-engineering method, and it
involves three phases: (1) Preprocessing, including the representation and conversation for
access information, as well as the cluster partitioning for the access logs, (2) ABAC rule
extraction, and (3) policy optimization. Specifically, entities as well as the relationships
among them in the logs are first formally represented with the basic sets and functions,
and all the numerical variables are converted into the corresponding categorical variants.
Subsequently, the access logs associated with the authorized rules are determined, and
the appropriate clustering technique is used to divide the logs into different clusters in the
preprocessing phase. Next, the similar patterns are searched based on the authorization
features of the log records, from which the effective attribute conditions that are combi-
nations of different attribute–value pairs are extracted, in order to construct the initial
rules in the extraction phase. Compared to the original ABAC policy, rules extracted
from the original access logs may be too restricted or too relaxed. Thus, these restricted
and relaxed rules need to be corrected, in order to further optimize the extracted rules.
Last, we evaluate the policy quality through experiments according to the accuracy and
complexity criteria. The flow chart of the proposal is presented in Figure 1.

3.1. Preprocessing. As an important method to analyze the clustering problem, the
partition is comprehensively used in scientific research and production practice due to its
convenience and accuracy characteristics. Compared with other initialization methods,
this method initializes the clustering based on the density and distance, which is more
robust and accurate.

Since the partition technique is an unsupervised learning algorithm for clustering the
categorical type, all the numerical variables need to be converted into the corresponding
variants. In the ABAC system, the session attribute is related to dynamic factors such
as time, location, and the access-control scenario. Thus, in the pre-processing, these
continue attribute variables are divided into the categorical ones, in order to extract the
standard ABAC policy. Moreover, the default-value problem of the attribute condition

Policy Extraction and Optimization with Access Logs 937

Figure 1. Flow chart of the proposed method

also needs to be addressed, as the frequency of each attribute condition is an important
factor in the rule extraction algorithm, which is used to determine whether the attribute
is valid. Thus, we assume that each missing value is replaced with the unknown value
simply denoted as “UNK”.

To make each cluster that contains several log records correspond to a single ABAC
rule, the process of partitioning the logs AL is presented as follows:

Step 1. Similar to the k-means algorithm, the clustering method of partitioning
around medoids (PAM) is used to divide the access logs into k different partitions such
as c1, c2, . . . , ck, from which k initial medoids are randomly selected.

938 W. Sun, L. Li and Y. Hu

Step 2. The distance of the cluster medoid ali to the non-medoid log records is computed
as follows:

dis(ali, associate(ali)) =

1− 1

|associate(ali)|
∑

alj∈associate(ui)

sim(ali, alj)
(5)

Similarly,

dis(alj, associate(ali)\{alj} ∪ {ali}) =

1− 1

|associate(ali)\{alj} ∪ {ali}|
∑

alk∈(associate(ali)\{alj}∪{ali})

sim(alj, alk)
(6)

where sim(ali, alj) =

∑
ACe∈{ACU ,ACO,ACS}

|ACeali∩ACealj |∑
ACe∈{ACU ,ACO,ACS}

|ACeali∪ACealj |
and function associate(ali) represents

all the non-medoid records associated with the cluster medoid ali.
Step 3. Compare dis(ali, associate(ali)) with dis(alj, associate(ali)\{alj}∪{ali}), and

then judge whether to exchange ali with alj and determine the new medoid, such that
∀alj ∈ c\{ali} : dis(ali, c\{ali}) < dis(alj, c\{alj}) .

Step 4. For different values of k, the PAM method is run repeatedly, and the accuracy
and error rate of the model are computed. The number k of the partitions that can better
balance the relationship of the policy accuracy and complexity is selected as the number
of the initial ABAC rules.

3.2. ABAC Rule Extraction. To extract the attribute conditions from the similar
recording characteristics, the effective attribute–value pairs including the positive and
negative are defined first.

Definition 1. Effective positive (or negative) attribute–value pair: Let all the possible
attribute–value pairs be S = < a, v|!v >. < a, v > is regarded as the effective positive
attribute–value pair of rule ρ =< AC, op > with respect to cluster ci, if and only if the
difference between the proportion of the value v in the cluster log ci and that of v in the
original log set is greater than threshold Tp. Similarly, < a, !v > is regarded as the effective
negative attribute–value pair, if and only if the difference of the two proportions is less
than a given threshold Tn. Then, < a, v > (or < a, !v >) is appended to the attribute-
condition set of ρ, which is denoted as EACρ. The set of all such rules is represented as
P.

According to the above definition, the process of extracting effective attribute conditions
for a given cluster ci is presented in Algorithm 1.

3.3. Policy Optimization. Compared to the original rules, rules extracted from the
original access logs may be too restricted or too relaxed. Specifically, the extracted rule
is considered to be restricted if it contains more complex attribute conditions than the
original rule; otherwise, it is considered to be relaxed if the rule only contains some simple
attribute conditions. Based on the logs AL+ and AL− as well as the initial extracted policy
set Π = {π1, π2, . . .}, the extracted log records with respect to different policy categories
ΠTP , ΠFP , ΠTN and ΠFN , which are respectively represented as TPΠ|AL, FPΠ|AL, TNΠ|AL,
and FNΠ|AL, are defined first.

Definition 2. TPΠ|AL : TPΠ|AL = {< rq, d > |∃ < rq, d >∈ AL+ : dΠ (rq) =
permitted}, each record of which indicates that the authorization decision made by Π is
still permitted for the access request rq of the positive logs AL+;

Policy Extraction and Optimization with Access Logs 939

ALGORITHM 1: Extraction of effective attribute conditions.

Algorithm 1. Extraction of effective attribute conditions
Input: Cluster ci, access logs AL, attribute set A, set V of attribute–value pairs,
and thresholds Tp and Tn
Output: ρci
1. Initialize EACρ = ∅ ;
2. Identify and represent the set of all the entities included in ci as Eci ;
3. Identify and represent the set of all the entities included in AL as EAL;
4. for each a in A do
5. for each v in Va do

6. if (
{ek|∃ek∈Eci :v∈fa e(ek,a)}

|Eci |
− {ek′ |∃ek′∈EAL:v∈fa e(ek′ ,a)}

|EAL|
) > Tp then

7. EACρ ← {< a, v >} ;
8. end if

9. if (
{ek′ |∃ek′∈EAL:v∈fa e(ek′ ,a)}

|EAL|
− {ek|∃ek∈Eci :v∈fa e(ek,a)}

|Eci |
) > Tn then

10. EACρ ← {< a, !v >} ;
11. end if
12. end for
13. end for
14. ρci ← EACρ;

Definition 3. FPΠ|AL : FPΠ|AL = {< rq, d > |∃ < rq, d >∈ AL+ : dΠ (rq) =
permitted}, each record of which indicates that the authorization decision made by Π
becomes permitted for the access request rq of the negative logsAL−;

Definition 4. TNΠ|AL : TNΠ|AL = {< rq, d > |∃ < rq, d >∈ AL+ : dΠ (rq) = denied},
each record of which indicates that the authorization decision made by Π is still denied
for the access request rq of the negative logs AL−;

Definition 5. FNΠ|AL : FNΠ|AL = {< rq, d > |∃ < rq, d >∈ AL+ : dΠ (rq) = denied},
each record of which indicates that the authorization decision made by Π becomes denied
for the access request rq of the positive logs AL+.

According to the definitions, we find that the restricted rules may produce large amounts
of the FNΠ|AL records, while the relaxed rules may produce large amounts of the FPΠ|AL
records. To further improve the correctness of the ABAC policy, the extracted rules are
repeatedly corrected in terms of the original logs as well as the initial extracted policy,
and the optimization process is presented as follows:

Step 1. The log records FPΠ|AL and FNΠ|AL are used as the training data sets to
extract the policy patterns ΠFN , and ΠFP , respectively.

Step 2. ΠFN and ΠFP are respectively compared with Π, in order to identify the
redundant or missing attribute conditions. Specifically, rules similar to those in ΠFN or
in ΠFP are selected from Π during the optimization process in the following two ways:

(1) For any rule ρi of ΠFN , if there exists a rule ρj of Π that is similar to ρi, then
the redundant attribute conditions are removed from ρj; if there exist no such rules, ρi is
regarded as a missing rule and then is added into Π.

(2) For any rule ρi of ΠFP , if there exists a rule ρj of Π that is similar to ρi, then the
missing attribute conditions are added into ρj. The detailed process is presented as shown
in Algorithm 2.

4. Experimental Analysis. In this section, we implement experiments using the syn-
thetic and real-world datasets, in order to demonstrate the efficiency and effectiveness of

940 W. Sun, L. Li and Y. Hu

ALGORITHM 2: Policy optimization

Algorithm 2. Policy optimization
Input: Initial policy set Π, policy patterns ΠFN , ΠFP , and effective attributes EAC
Output: Optimized policy set Π′

1. Initialize Π′ = Π ;
2. for each ρi in ΠFN .P do
3. for each ρj in Π′.P do

4. sim(ρi, ρj) =

∑
EACe∈{EACU ,EACO,EACS}

|EACeρi∩EACeρj |∑
EAe∈{EACU ,EACO,EACS}

|EACeρi∪EACeρj | ;

5. if ρj is similar to ρi then
6. ρj ← EACρj\(EACρj\EACρi) ;
7. else
8. ρj ← EACρj ∪ EACρi ;
9. end if
10. end for
11. end for
12. for each ρk in ΠFP .P do
13. for each ρl in Π′m.P do

14. sim(ρk, ρl) =

∑
EACe∈{EACU ,EACO,EACS}

|EACeρk∩EACeρl |∑
EAe∈{EACU ,EACO,EACS}

|EACeρk∪EACeρl | ;

15. if ρl is similar to ρk then
16. ρl ← EACρl ∪ (EACρk\EACρl) ;
17. end if
18. end for
19. end for

the proposal. All the experiments are implemented on a standard desktop PC with an
Intel i5–7400 CPU, 4 GB RAM, and a 160 GB hard disk running a 128–bit Windows 10
operating system. All simulations are compiled and run under the Python environment.

4.1. Efficiency Evaluation of the Proposal. First, three real-world datasets are con-
sidered: The University, Healthcare, and Project Management from the work [9], which
have been usually used for evaluating the performances of different policy engineering
methods recently. To evaluate the performance of the proposal in the preprocessing and
policy extraction phases, the number of the policy rules and the execution time are con-
sidered as two main measures.

We repeatedly carry out experiments 10 times for each dataset and take the average
value of the experimental result as output. Specifically, number of rules is 10, 7, and 12,
respectively; execution time is 0.02 s, 0.02 s, and 0.03 s, respectively. We compare its
performance with other methods such as the Xu-Stoller [9] and VisMAP [13] and find
that the number of the partitioned ABAC rules of the proposal is less than or equal to
the other two methods; meanwhile, execution time of these three methods is almost the
same. This is because the size of the users, objects, and access logs in each dataset is
small. Thus, our method performs as well as the Xu-Stoller and VisMAP methods using
the small-scale datasets.

We next generate synthetic datasets using the particular parameters, since we find that
there exist no suitable real-world datasets of large scales for the experiments. Specifically,
the number of users takes 10 different value among 100 and 1000, the number of objects

Policy Extraction and Optimization with Access Logs 941

takes 200, 400, 600 and 800, and the attributes of the entities are randomly selected
from the three small-scale datasets above. To further evaluate the performance of the
proposal, we consider the number of the rule clusters and the running time as measures
and compare its performance with that of the VisMAP. Additionally, as described in the
preprocessing phase, we partition the log records by clustering the original access logs,
while the VisMAP directly separates an original matrix before rearrangement. If the
constructed datasets are already sufficiently visual, then the access logs never need to be
partitioned. Therefore, we first consider the following cases with no partitions.

We take the number of entities including the users and objects as input, repeatedly
carry out the experiments using different datasets and take the average value of the rule
number as well as that of the execution time. The results are presented as shown in
Figures 2, and in Figure 3, respectively.

Figure 2. Evaluation of the number of rules

Figure 3. Evaluation of the execution time

Figure 2 shows the varying trend of the number of extracted rules with the increasing
number of users as well as that of objects. It is observed that the rule number changes
from 20 to 46 with 200 objects when the number of users changes from 100 to 1000, which
tends to grow slightly. It is observed that, however, the rule number increases from 33 to
122 when the number of objects is 800, which varies obviously. On the other hand, from
the viewpoint of the varying objects, it is observed that the rule number also increases
when the number of users is fixed. In general, the number of the extracted rules varies
slightly with the small-scale entities. That is attributed to the fact that the less the user
number, the fewer rules discovered in the policy extraction.

Figure 3 shows the varying trend of execution time with the increasing number of users
as well as that of objects. It is observed that execution time tends to grow linearly and is

942 W. Sun, L. Li and Y. Hu

always below 340 s when the number of objects is less than 600. However, the execution
time arrives to around 1100 s with 1000 users and 800 objects, which is inefficient. This
is because the scale of the access logs increases with the increasing number of users and
that of objects. Thus, it needs more time to determine whether or not the partition is
implemented before actually extracting the ABAC rules.

To demonstrate the efficiency of the policy extraction according to Algorithm 1, the
experimental parameters are considered for generating synthetic datasets. These pa-
rameters contain numbers of users, objects, effective attribute–value pairs, rules used
to construct the datasets and the maximum length of any rule, which are denoted as
|U |, |O|, |EAV |, |RC|, and |RL|, respectively. Meanwhile, to compare the performance
of the proposal with the Xu-Stoller, the generated datasets are converted into the data
format that can be performed by the Xu-Stoller, and we assume that each access-control
record contains only one permission. To study how these parameters would affect the
extracted results, values of |U | and |O| are fixed as 800, and 200, respectively. The other
parameter settings are considered as shown in the middle three columns of Table 1. The
experimental results using different combinations of parameters as well as those of the Xu-
Stoller are presented in the last two columns in Table 1. It is observed that the proposal
performs as well as the Xu-Stoller for extracting policy rules.

Table 1. Comparison of the extracted rules.

|S| |O| |EAV | |RCmax| |RLmax| |PXu−Stoller| |Ptheproposal|
800 200 40 30 5 26 25.53
800 200 45 30 5 24.62 24.61
800 200 50 20 5 16.65 16.51
800 200 50 40 5 34 34.28
800 200 50 50 5 41 40.75
800 200 50 30 4 24.63 23.33
800 200 50 30 3 23.66 23.49
800 200 50 30 2 22 22
800 200 60 30 5 25.64 24.29
800 200 70 30 5 25.61 24.47
800 200 80 30 5 26.58 25.76

4.2. Effectiveness Evaluation of the Proposal. Next, the synthetic access logs are
randomly generated using a particular policy set such as the datasets UniversityP, Health-
careP, ProjectManagementP, UniversityPN, HealthcarePN, and ProjectManagementPN
from the work [24]. The authorization rules of the policy are constructed with arbitrary
attributes and their attribute values, which can evaluate the performance of the policies
extracted from the access logs of different sizes and changing structural features. To con-
struct the synthetic input data, the authorization tuples are generated in order to evaluate
the ABAC policy. Real-world datasets are the open access logs that are provided by the
datasets Amazon Kaggle and Amazon UCI. Amazon Kaggle records the access requests
of the employees as well as the authorization results for the resource access, and it also
specifies the attribute-property values and the resource identifiers of the employees. Fur-
ther, Amazon Kaggle contains12000 users and 7000 object resources, while Amazon UCI
contains more than 36000 users, 27000 permissions and 33000 attribute properties.

The Precision, Recall, Accuracy, and F1 score are considered as criteria to evaluate
how well the extracted policies match with the original ones in our work. According to

Policy Extraction and Optimization with Access Logs 943

Definitions 2-5, they can be represented as:

PrecisionΠ|AL =
|TPΠ|AL|

|TPΠ|AL|+ |FPΠ|AL|
(7)

RecallΠ|AL =
|TPΠ|AL|

|TPΠ|AL|+ |FNΠ|AL|
(8)

AccuracyΠ|AL =

∣∣TPΠ|AL
∣∣+
∣∣TNΠ|AL

∣∣∣∣TPΠ|AL
∣∣+
∣∣TNΠ|AL

∣∣+
∣∣FPΠ|AL

∣∣+
∣∣FNΠ|AL

∣∣ (9)

F1 Π|AL = 2×
PrecisionΠ|AL ×RecallΠ|AL
PrecisionΠ|AL +RecallΠ|AL

(10)

The Accuracy measure may have errors over the unbalanced datasets, while the F1 score
can be chosen as the desired criterion for evaluating the policy correctness. This is because
the higher F1 score, the higher the policy quality. This is means that the relationship
between the extracted policies and the original access policies is closer.

The weighted structural complexity (WSC) is another important criterion to evaluate
the policy quality, which aims to perform a generalized evaluation for the scale of a given
ABAC policy. It is represented as:

WSC(Π) = WSC(P) =
∑
ρ∈P

WSC(ρ) (11)

WSC(ρ) = WSC(EAC, op) = w1×WSC(EACu)+w2×WSC(EACo)+w3×WSC(EACs)
(12)

where WSC(EACe) = |EACe|, |EACe| represents the number of attribute–value pairs
included in the effective attribute conditions of entity e, wi represents a specific weight
that is used to adjust its contribution to the complexity of the rule, and w1 + w2 + w3 =
1. Obviously, the less the value of WSC, the more convenient and concise the policy
management.

To evaluate the performance of the policy optimization according to Algorithm 2, we
repeatedly conduct the experiments using different datasets, including the synthetic and
the real-world. In light of different evaluation criteria such as the running time, accuracy,
F1 score and complexity, the best results of their performances are taken. The results of
the proposal as well as those of methods such as the Xu-Stoller [9] and Cotrini [23] are
presented as shown in Table 2, where ” \ ” indicates that the experimental results are
unknown or unsatisfactory.

From the results of the table, it is observed that the proposal outperforms the other two
methods, especially on the UniversityP, ProjectManagementP, Amazon Kaggle, Amazon
UCI datasets. Specifically, for the UniversityP, running time, accuracy, F1 score, WSC
are 9.6 s, 97%, 76.1%, and 32, respectively; for the ProjectManagementP, the results of
the proposal are 13.62, 90.33%, 53.01%, and 63, respectively; for the Amazon Kaggle, the
results of the proposal are 205.1, 97.6%, 96.67%, and 75, respectively; for the Amazon
UCI, the results of the proposal are 1231.71, 95.31%, 94.19%, and 95, respectively.

Furthermore, Figure 4 and Figure 5 present the comparisons of the three methods for
F1 score, and complexity, respectively. It is observed from Figure 4 that the changing
trend of F1 score of the proposal is similar to that of the Cotrini method, and both the
methods outperform the Xu-Stoller method; it is observed from Figure 5 that the changing
trend of the complexity of the proposal is flat and is very close to that of the Xu-Stoller
method, and both the methods can extract more concise and higher-quality policies than
the Cotrini method.

944 W. Sun, L. Li and Y. Hu

Table 2. Performance comparison with other methods.

Method Policy set
Time
(s)

Accuracy
(%)

F1 score
(%)

Complexity
(WSC)

Xu-Stoller [9]
UniversityP

227 94.74% 65.87% 34
Cotrini [23] 126 80.74 45.3% 508

The proposal 9.6 97% 76.1% 32
Xu-Stoller [9]

HealthcareP
32645 64.43% 63.61 16

Cotrini [23] 529 72.72% 64% 272
The proposal 10.1 81.15% 70.71% 59
Xu-Stoller [9]

ProjectManagementP
\ 3.54% 0.71% 29

Cotrini [23] 3587 91.57% 54.12% 77
The proposal 13.62 90.33% 53.01% 63
Xu-Stoller [9]

UniversityPN
4230 73.37% 16.1% 34

Cotrini [23] 204 93.55% 88.5% 1389
The proposal 22 92.11% 84.6% 47
Xu-Stoller [9]

HealthcarePN
45348 79.25% 73.09% 17

Cotrini [23] 3587 86.46% 79.2% 462
The proposal 10.2 89.2% 78.7% 84
Xu-Stoller [9]

ProjectManagementPN
\ 2.19% 0.62% 45

Cotrini [23] 2848 82.75% 62.66% 100
The proposal 25.83 81.91% 54.47% 61
Xu-Stoller [9]

Amazon Kaggle
\ 1.69% 0.7% 51

Cotrini [23] 237 84.25% 91.39% 2431
The proposal 205.1 97.6% 96.67% 75
Xu-Stoller [9]

Amazon UCI
\ 1.55% 0.67% 43

Cotrini [23] 1345 70.93 75.64% 1247
The proposal 1231.71 95.31% 94.19% 95

Figure 4. Comparison of the F1 score

4.3. Discussion. From the above performance evaluation and comparison for the policy
extraction and optimization, we find the proposal has the following main advantages:

(1) The authorization rules for ABAC with the negative attribute conditions may be
more flexible and convenient. However, the negative conditions are not considered during
the rule-extraction process using the existing methods. To address this issue, the attribute

Policy Extraction and Optimization with Access Logs 945

Figure 5. Comparison of the complexity

conditions including both the positive and negative types are effectively extracted to
construct ABAC rules in our method, so that the policy descriptions for access requests
become more flexible and convenient, while enhancing the interpretability of the ABAC
policy.

(2) The ABAC policy should be as concise and correct as possible. However, there are
numerous redundant and inaccurate rules extracted using the existing methods, and these
initial derived policies should be optimized. To address this issue, based on principles of
the correctness and conciseness, the evaluation criteria of the policy quality are presented
in our method, and the efficiency and effectiveness of the proposal are demonstrated
through the experiments.

(3) For a given set of access logs that contain access requests and system authorization
decisions, the clustering partition technology is used to determine the initial number of
policy rules in our method, which reduces the scale of the policy engineering.

Compared to the existing research approaches, features of the proposal are presented
as shown in Table 3, where a tick X indicates that the feature is available. Nevertheless,

Table 3. Comparison of features.

Feature
Zheng

et al. [14]
Sun

et al. [15]
Das

et al. [13]
Xu

et al. [9]
Cotrini

et al. [23]
Proposed method

Enhancing the policy

interpretability
X X X X

Reducing the scale

of the policy engineering
X X X

Accuracy analysis of the policy X X X
Complexity analysis of the policy X X X

the security issues of the proposal such as the separation of duties constraint, various
cardinality constraints on entities and attributes, as well as the conflict-detection problem,

946 W. Sun, L. Li and Y. Hu

however, are not considered during either the policy extraction or optimization phase,
which are the main limitations of our work.

5. Conclusion. A novel policy extraction method for attribute-based access control
based on access logs was proposed in this study. First, we utilized the partition tech-
nology to construct an initial set of rule clusters from the given access logs, and then we
presented an algorithm to extract the positive and negative attribute conditions from the
ini-tial cluster set and constructed effective rules. Next, we proposed a policy optimiza-
tion algorithm to repeatedly refine the extracted rules and improve the policy quality
according to different policy categories. As a result, the proposed method flexibly suited
various requirements of organizations with more powerful policy expressiveness, improved
the policy accuracy and reduced the complexity of the policy engineering. The experimen-
tal analysis showed that it could enhance the policy interpretability while guaranteeing
the policy quality. Our future work will focus on studying how to implement the proposal
in practical scenarios with the IoT, blockchain, and online social networks.

Acknowledgements. This work was partially supported by the Natural Science Foun-
dation of China (61501393), the Foundation of Henan Educational Committee, under
Contract No. 20B520031, and the Foundation of Guangxi Key Laboratory of Trusted
Software (No. KX202061)

REFERENCES

[1] T.-Y. Wu, Q. Meng, Y.-C. Chen, S. Kumari, and C.-M. Chen, “Toward a secure smart-home IoT
access control scheme based on home registration approach,” Mathematics, vol. 11, no. 9, 2123, 2023.

[2] T.-Y. Wu, F. Kong, Q. Meng, S. Kumari, and C.-M. Chen, “Rotating behind security: An en-
hanced authentication protocol for IoT-enabled devices in distributed cloud computing architecture,”
EURASIP Journal on Wireless Communications and Networking, vol. 2023, 36, 2023.

[3] T.-Y. Wu, L. Wang, X. Guo, Y.-C. Chen, and S.-C. Chu, “SAKAP: SGX-based authentication key
agreement protocol in IoT-enabled cloud computing,” Sustainability, vol. 14, no. 17, 11054, 2022.

[4] G. Batra, V. Atluri, J. Vaidya, and S. Sural, “Deploying ABAC policies using RBAC systems,”
Journal of Computer Security, vol. 27, no. 4, pp. 483–506, 2019.

[5] M. Narouei, H. Khanpour, H. Takabi, N. Parde, and R. D. Nielsen, “Towards a top-down policy
engineering framework for attribute-based access control,” in 22nd ACM on Symposium on Access
Control Models and Technologies, pp. 103–114, Indianapolis, IN, USA, 21–23 June, 2017.

[6] N. V. Verde, J. Vaidya, V. Atluri, and A. Colantonio, “Role engineering: From theory to practice,”
in Second ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA,
pp. 181–192, 7–9 February, 2012.

[7] M. Alohaly, H. Takabi, and E. Blanco, “Towards an automated extraction of ABAC constraints from
natural language policies,” in 34th IFIP TC 11 International Conference on ICT Systems Security
and Privacy Protection, Lisbon, Portugal, pp. 105–11, 925–27 June 2019.

[8] A. Roy, S. Sural, A. K. Majumdar, J. Vaidya, and V. Atluri, “Enabling workforce optimization
in constrained attribute-based access control systems,” IEEE Transactions on Emerging Topics in
Computing, vol. 9, no. 4, pp. 1901–1913, 2019.

[9] Z. Xu and S. D. Stoller, “Mining attribute-based access control policies,” IEEE Transactions on
Dependable and Secure Computing, vol. 12, no. 5, pp.533–545, 2015.

[10] S. Das, B. Mitra, V. Atluri, J. Vaidya, and S. Sural, “Policy engineering in RBAC and ABAC,” in
From Database to Cyber Security; Springer: Cham, Switzerland, pp. 24–54, 2018.

[11] Y. Benkaouz, M. Erradi, and B. Freisleben, “Work in progress: K-nearest neighbors techniques for
ABAC policies clustering,” in 2016 ACM International Workshop on Attribute Based Access Control,
New Orleans, LA, USA, pp. 72–75, 11 March 2016.

[12] S. Das, S. Sural, J. Vaidya, and V. Atluri, “Poster: Using gini impurity to mine attribute-based
access control policies with environment attributes,” in 23nd ACM on Symposium on Access Control
Models and Technologies, Indianapolis, IN, USA, pp. 213–215, 13–15 June 2018.

Policy Extraction and Optimization with Access Logs 947

[13] S. Das, S. Sural, J. Vaidya, V. Atluri, and G. Rigoll, “VisMAP: Visual mining of attribute-based ac-
cess control policies,” in 15th International Conference on Information Systems Security, Hyderabad,
India, pp. 79–98, 16–20 December 2019.

[14] G. Zheng and Y. Xiao, “A research on conflicts detection in ABAC policy,” in 7th International Con-
ference on Computer Science and Network Technology, Dalian, China, pp. 408–412, 19–20 October
2019.

[15] W. Sun, H. Su, and H. Xie, “Policy-engineering optimization with visual representation and
separation-of-duty constraints in attribute-based access control,” Future Internet, vol. 12, no. 10,
p. 164, 2020.

[16] S. Das, S. Sural, J. Vaidya, and V. Atluri, “HyPE: A hybrid approach toward policy engineering
in attribute-based access control,” IEEE Letters of the Computer Society, vol. 1, no. 2, pp. 25–29,
2018.

[17] P. Iyer and A. Masoumzadeh, “Mining positive and negative attribute-based access control policy
rules,” in 23nd ACM on Symposium on Access Control Models and Technologies, Indianapolis, IN,
USA, pp. 161–172, 13–15 June 2018.

[18] J. C. John, S. Sural, and A. Gupta, “Attribute-based access control management for multicloud
collaboration,” Concurrency and Computation: Practice and Experience, vol. 29, no. 19, p. e4199,
2017.

[19] T. Talukdar, G. Batra, J. Vaidya, V. Atluri, and S. Sural, “Efficient bottom-up mining of attribute-
based access control policies,” in 3rd IEEE International Conference on Collaboration and Internet
Computing, San Jose, CA, USA, pp. 339–348, 15–17 October 2017.

[20] J. C. John, S. Sural, and A. Gupta, “Authorization management in multi-cloud collaboration us-
ing attribute-based access control,” in 15th International Symposium on Parallel and Distributed
Computing, Fuzhou, China, pp. 190–195, 8–10 July 2016.

[21] J. C. John, S. Sural, and A. Gupta, “Optimal rule mining for dynamic authorization management in
collaborating clouds using attribute-based access control,” in 10th IEEE International Conference
on Cloud Computing, Honolulu, HI, USA, pp. 739–742, 25–30 June 2017.

[22] M. Gautam, S. Jha, S. Sural, J. Vaidya, and V. Atluri, “Poster: Constrained policy mining in
attribute-based access control,” in 22nd ACM on Symposium on Access Control Models and Tech-
nologies, Indianapolis, IN, USA, pp. 121–123, 21–23 June 2017.

[23] C. Cotrini, T. Weghorn, and D. Basin, “Mining ABAC rules from sparse logs,” in 2018 IEEE
European Symposium on Security and Privacy, IEEE, pp. 31–46, 2018.

[24] L. Karimi, M. Aldairi, J. Joshi, and M. Abdelhakim, “An automatic attribute-based access control
policy extraction from access logs,” IEEE Transactions on Dependable and Secure Computing, vol.
19, no. 4, pp. 2304-2317, 2021.

[25] W. Sun, H. Su, and H. Liu, “Role-engineering optimization with cardinality constraints and user-
oriented mutually exclusive constraints,” Information, vol. 10, no. 11, p.342, 2019.

